Modelling, prediction and analysis of surface roughness in turning process with carbide tool when cutting steel C38 using artificial neural network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network wit...

متن کامل

Artificial Neural Network Predictive Modeling of Uncoated Carbide Tool Wear When Turning Nst 37.2 Steel

We report the development of a predictive model based on artificial neural network (ANN) for the estimation of flank and nose wear of uncoated carbide inserts during orthogonal turning of NST (Nigerian steel) 37.2. Turning experiments were conducted at different cutting conditions on a M300 Harrison lathe using Sandvic Coromant uncoated carbide inserts with ISO designations SNMA 120406 using fu...

متن کامل

Surface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects

The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Industrial and Systems Engineering

سال: 2017

ISSN: 1748-5037,1748-5045

DOI: 10.1504/ijise.2017.085227